

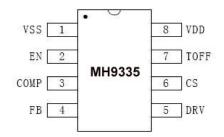
Description

MH9335 is a high efficient boost type LED driver IC.

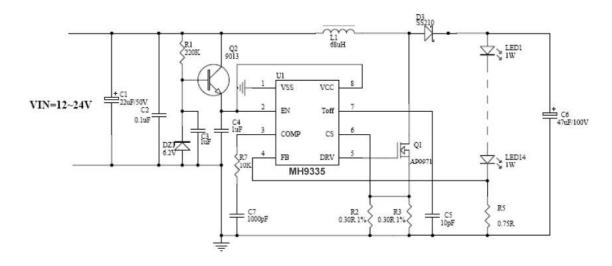
MH9335 uses fixed off-time control scheme and 2MHz switching frequency can be achieved. The off-time can be set by an external capacitor and resistor.

The LED current can be set by an externaal resistor.

Features


Wide LED current range: 5mA to 2A

Wide input voltage range: > 2.5V


Up to 90% efficiency

Up to 2MHz switching frequency

Package

Typical Application

Pin Assignment

Pin No.	Pin Name	Descripition
1	VSS	Ground
2	EN	Chip Enable
3	COMP	Compensation
4	FB	Voltage feedback
5	DRV	Driver
6	CS	Current sensing
7	TOFF	Off time selection
8	VDD	Power supply

Absolute Maximum Ratings

Type	Symbol	Description	Value	Unit
Voltage	Vmax	Maximum voltage on VDD pins	8	V
	Vmin- max	Voltage range on EN, CS and FB pins	-0.3- VDD+0 .3	V
Thermal	Tmin-max	Operation temperature range	-20-85	${\mathbb C}$
	Tstorage	Storage temperature range	-40-165	$^{\circ}$ C
ESD	VESD	ESD voltage for human body model	2000	V

Electronic Characteristics

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Power supply	VDD		2.5		6.5	V
CS pin feedback voltage	VCS		250	260	270	mV
FB pin feedback voltage	VFB		250	260	270	mV
Operation current	IDD			0.5	1	mA
Off time (without ROFF and COFF)	TOFF0			640		ns
Standby current	IDDQ				1	uA
EN pin high level voltage	VENH		2.0			V
EN pin low level voltage	VENL				0.8	V
DRV Rising Time	TRISE	500pF cap on DRV pin			50	ns
DRV Falling Time	TFALL	500pF cap on DRV pin			50	ns

Detail Description

MH9335 works in two states:

ON State: the external switch is on until one of the comparators outputs a high level voltage, the MH9335 goes to OFF state.

OFF State: the external switch remains off until a fixed off time and the outputs of the two comparators are low, the MH9335 goes to ON state and repeat the ON and OFF process.

Fixed Off-Time

The fixed off time TOFF is determined by ROFF and COFF as:

$$T_{OFF} = 0.51 \bullet \frac{100 K\Omega \bullet R_{OFF}}{R_{OFF} + 100 K\Omega} \bullet (C_{OFF} + 12 pF)$$

If TOFF pin is left open, the typical value of TOFF is: 612ns

The TOFF can be reduced by adding ROFF and be increased by adding COFF. It works like a traditional current mode PWM DC-DC converter except that the off time is fixed and the working frequency is variable due to the values of VIN and VOUT. The comparator connected to CS pin is used for current limiting and the one connected to FB is used for voltage feedback.

Setting LED Current

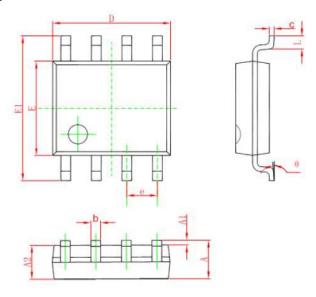
The LED current is set by the external resistor RFB:

Compensation

The output (COMP) of the transconductance error amplifier is used to compensate the regulator control loop. The system uses two poles and one zero to stabilize the loop.

$$f_{p1} = \frac{1}{\pi \times R_{LOAD} \times C_{OUT}}$$

$$f_{p2} = \frac{G_{EA}}{2 \times \pi \times C_{C} \times A_{VEA}}$$


$$f_{z1} = \frac{1}{2 \times \pi \times C_{C} \times R_{C}}$$

$$AVDC = \frac{1.5 \times A_{VEA} \times VIN \times R_{LOAD} \times V_{FB}}{VOUT^{2}}$$

Where, AVEA=200V/V and GEA=30uV/A.

SOP8 Package Outline

Symbol	Dimensions In Millimoters		Dimensions In Inches		
	Min	Max	Min	Max	
A	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
c	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.200	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
e	1.270 (BSC)		0.050 (BSC)		
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	